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Abstract
We review our recent advances in four-wave mixing spectroscopy of single
semiconductor quantum dots using heterodyne spectral interferometry, a novel
implementation of transient nonlinear spectroscopy allowing the study of the
transient nonlinear polarization emitted from individual electronic transitions
in both amplitude and phase. We present experiments on individual excitonic
transitions localized in monolayer islands of GaAs/AlAs quantum wells and
in self-assembled CdTe/ZnTe quantum dots. We investigate the formation of
the photon echo from individual transitions, both with increasing number of
transitions in the ensemble, and in the presence of temporal jitter of the energy
of a single transition. The detection of amplitude and phase of the signal
allows the implementation of a two-dimensional femtosecond spectroscopy, in
which mutual coherent coupling of single quantum dot states can observed and
quantified.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Nonlinear optical spectroscopy is a powerful technique to investigate the electronic structure
and dynamics of matter. Specifically, the third-order nonlinearity probed in four-wave
mixing (FWM), spectral hole-burning, and pump–probe experiments can be used to determine
homogeneous lineshapes of inhomogeneously broadened transitions. Multidimensional
nonlinear optical spectroscopy [1] can be used to probe lattice anharmonicities [2] or dynamic
pathways of electron–hole excitations [3]. Up to now, these investigations have been limited to
studies of large ensembles of the quantum systems under investigation, due to reasons of both
signal strength and directional selectivity. With the introduction of the heterodyne spectral
interferometry (HSI) technique, we have been able to perform transient four-wave mixing
(FWM) measurements on individual, localized excitons. Using a multichannel heterodyne
detection, the frequency-resolved third-order polarization is measured in amplitude and phase,
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so that both the time-resolved and the spectrally resolved third-order polarization can be
retrieved. This enabled us to investigate various nonlinear optical phenomena previously not
amenable to study. These include (i) the evolution of the nonlinear response from the case
of a free polarization decay to that of a photon echo as the number of individual transitions
in an inhomogeneously broadened ensemble is increased; (ii) the separation of homogeneous
and inhomogeneous broadening of a single transition; and (iii) the quantification of coherent
coupling between excitonic transitions using two-dimensional spectroscopy. The paper is
organized as follows: in section 1 we discuss in detail the experimental HSI technique, in
section 2 we present the investigated samples, section 3 compares the photoluminescence with
the FWM response, section 4 discusses the formation of the photon echo for a small ensemble
of states and for a single state with temporal fluctuations, and section 5 is devoted to the two-
dimensional FWM enabling the determination of coherent coupling between states.

2. Heterodyne spectral interferometry

Since the size of localized excitonic states in semiconductors is typically much smaller than
the wavelength of the resonant light, the light emitted by the polarization of an individual state
propagates in all directions (apart from polarization-induced effects), so that the commonly
used directional selection of the four-wave mixing signal and other nonlinear optical signals
is not effective. To discriminate these signals from the excitation light in this case, we can
only use the phase coherence of the signal relative to the excitation pulses, which is determined
by the form of the nonlinear polarization, for the two-pulse four-wave mixing, for example,
P(3) ∝ E∗

1 E2E2, with the excitation electric fields E1,2. In order to be sensitive to the phase
of the emitted FWM field, we need to detect the field by its interference with a reference
field Er of known phase. Such a detection principle was used to measure pump–probe and
four-wave mixing in waveguides [4, 5] and in planar InAs quantum dot ensembles [6]. In
these investigations, large ensembles of excitonic states (>105) were studied, for which the
FWM was emitted as a photon echo [7] due to the inhomogeneous broadening of the transition
energies in the excited ensemble. Conversely, when probing individual localized transitions,
the signal from each transition is expected to be emitted as a free polarization decay, with a
linewidth given by the intrinsic dephasing time of the transition, typically several orders of
magnitude narrower than the inhomogeneous broadening of the ensemble. The resulting signal
from several transitions will therefore be of significant spectral complexity, which requires
a multichannel detection if all its components are to be measured simultaneously. Due to
the weak signal from individual transitions, only a simultaneous detection of all components
provides sufficient sensitivity to allow for experimental feasibility. We have therefore
developed a multichannel heterodyne scheme using spectrally resolved detection with a charge-
coupled device (CCD), and we retrieve the coherent signal by spectral interferometry [8, 9].
This scheme provides a simultaneous measurement of all spectral components of the signal
in both amplitude and phase, allowing the determination of the signal in both the frequency-
domain and the time-domain, which are connected by Fourier transformation. We call the
resulting spectroscopic implementation of transient nonlinear microscopy heterodyne spectral
interferometry (HSI). Conceptually it represents a combination of the previously used phase-
stabilized two-dimensional femtosecond spectroscopy [10] and phase-sensitive selection of
the nonlinear signal used in heterodyne-detected four-wave mixing [5] or in phase-cycling
detection [11].

We now discuss in more detail the implemented two-beam experiment [12]. We use the
excitation electric field pulses E1,2(t) centred at t = 0 which have a relative delay time τ ,
so that E(t) = E1(t + τ ) + E2(t). A generalization of the experiment to more pulses does
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not involve any qualitative changes of the scheme. The polarization response function R of a
medium can be developed into different orders R(n)(τ, t) in the excitation field E(t) [13]. Each
R(n) is a sum of contributions of different order in the fields E1,2, i.e. R(n) ∝ En1

1 Ēm1
1 En2

2 Ēm2
2 with

n = (n1, m1, n2, m2) and n = n1+m1+n2+m2, where the exponents n1,2 and m1,2 are natural
numbers including zero. In extended media, one can discriminate the orders experimentally
using defined wavevectors of the excitation fields k1,2, in which case the polarization R(n) emits
in the direction l1k1 + l2k2 with l1 = n1 − m1 and l2 = n2 − m2. For sub-wavelength-sized
media, like individual excitonic transitions, the broken translational invariance prohibits the use
of such a wavevector selection. However, we can still use the time invariance1 of the response
function to select R(n) by repeating the experiment with controlled variations in the phases
of the pulses E1,2 ∝ eiϕ1,2 . In the limit of a large number of repetitions, the time-ensemble
averaged response function is measured in this way. To measure repeats that are independent
of each other, the repetition period τp has to be longer than the memory time of the response
function, which is typically given by the dephasing times and density lifetimes of the resonant
transitions in the medium. The different orders of the response function are then discriminated
by their Fourier transform versus ϕ1,2:

Rl1 ,l2
s =

∫
R(ϕ1, ϕ2)e

(−il1ϕ1−il2ϕ2) dϕ1 dϕ2. (1)

The selected Rl1 ,l2
s is the sum over all R(n) with equal l1, l2. The individual components R(n)

are of different orders in |E1,2|, and they can be distinguished by their dependences on the
field amplitudes. For example, the FWM showing a photon echo for positive τ corresponds to
n = (0, 1, 2, 0), so that l1 = −1 and l2 = 2, i.e. it scales linearly with |E1| and quadratically
with |E2|. If we use excitation pulses of equal carrier frequency, the response field at this carrier
frequency is given by contributions with |l1 + l2| = 1, as is the case for the linear response and
the photon echo.

A schematic diagram of the experimental setup used for the experimental results presented
here is given in figure 1. Optical pulses of about 150 fs duration at a repetition rate of
2π/τp = �p = 2π × 76 MHz were produced by a mode-locked Ti:sapphire laser. The pulses
were spectrally shaped to resonantly excite the selected ensemble of localized exciton states.
The pulses were split into two beams P1,2 that were subsequently phase and frequency shifted
with acousto-optical modulators (AOMs) by ϕ1,2 = �1,2t with �1,2 = 2π × (79, 80) MHz.
They were then recombined in a beam-splitter cube into the same spatial mode Ps, with a
relative delay time τ , positive for pulse 1 leading. A reference beam Pr (the part of P2 not
deflected by the AOM) propagates close to Ps and fills, as with Ps, the far-field plane (FF) of
the microscope objective (MO). By passing through the same optical elements after the beam-
splitter cube, phase fluctuations between Pr and Ps are minimized. The path over which the
beams travel separately is encapsulated, minimizing phase fluctuations due to air turbulence.
The whole setup is temperature stabilized. The beams are coupled into the MO using a beam
splitter of only 4% reflectivity in order to reduce the losses in the subsequent transmission in
the detection path. The beams are focused onto the sample plane, called the near-field plane
(NF), by an achromatic MO of 0.85 numerical aperture. This MO was mounted in the cryostat
sample chamber on a piezoelectric translation stage, allowing for fine positioning of the focus
with 10 nm sensitivity. The response field emitted in the reflected direction is collected by the
same MO and spatially filtered at an intermediate image plane to keep only the zeroth order
of the Airy diffraction created by the objective aperture for both Pr and Ps (see the NF image
in figure 1). From there, a dual lens system (L2, L3) images the FF into a mixing AOM, in
which Pr and Ps spatially overlap. The NF is instead imaged into the directions at the AOM,

1 This demands a temporal stability of the investigated structure over the course of the experiment.
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Figure 1. Scheme of the experimental setup. Boxes: acousto-optical modulators of the indicated
frequency. MO: high numerical aperture (0.85) microscope objective, L1–L5 achromatic doublet
lenses. Spectrometer: imaging spectrometer of 15 μeV resolution. NF: near field of sample, FF: far
field of sample.

so that the spatial separation between Pr and Ps in the NF (≈9 μm) corresponds to different
directions in the AOM. The angle between these directions is chosen to match the AOM Bragg
diffraction angle (0.015 rad). By this arrangement, the diffracted beam of Pr overlaps with Ps

and vice versa. The resulting mixed beams Pa,b pass through a dual lens system (L4, L5) that
images the NF into the input slit of a high-resolution (15 μeV) imaging spectrometer where
Pa,b are spatially separated, while the FF is imaged onto the spectrometer grating to avoid
vignetting. The spectrally resolved and time-resolved intensities Ia,b(ω, T ) of Pa,b are detected
by a liquid nitrogen cooled silicon charge-coupled device (CCD) at the output focus plane of
the spectrometer. In this notation ω denotes the optical frequencies, with a resolution limited
by the spectrometer (≈3 GHz), while T denotes the lower-frequency time dynamics, which
parameterizes the repeated measurements with different ϕ1,2.

The mixing AOM is driven with an electric field ∝ cos(�DT + ϕ), so that Ps acquires
a phase shift −�DT − ϕ when diffracted into Pr, while Pr is phase-shifted by �Dt + ϕ

when diffracted into Ps. The diffraction efficiency is adjusted to 50%, so that the detected
intensities are 2Ia,b(ω, T ) = |Er|2 + |Es|2 ± 2 Re(ErĒsei�DT +ϕ) with the reference and signal
fields Er,s. We detect Ia,b(ω, T ) integrated over the CCD exposure time Te ≈ 50–1000 ms. To
extract the interference term only, we determine Id(ω) = Ia − Ib = 2

∫ Te

0 Re(ErĒsei�DT +ϕ)dT .
In this quantity, the time-integration results in a low-pass filter sin(x)/x with x = Te�/2,
suppressing frequencies � > 4/Te. The response Rl1,l2

s has the interference frequency
�i = l1�1 + l2�2 − �D. Since Er is much shorter than the repetition period, Erei�D contains
many sidebands separated by �p, and �i is thus only defined modulo �p. By the choice of
�1,�2 and �p, the �i corresponding to different l1,2 are differing in the megahertz range.
To select Rl1,l2

s in Id, we use �D = l1�1 + l2�2 to shift �i to zero, so that Rl1 ,l2
s is not

suppressed, while other R
l′1 ,l′2
s are suppressed by factors of Te�

′
i > 106. In order to avoid the

background due to systematic variations of detection efficiencies in Ia,b(ω), for example due
to inhomogeneities in the CCD response, ϕ is cycled by π between adjacent exposures, and
we use 2Id = I ϕ=0

d − I ϕ=π

d . In this way, the classical noise and systematic errors from the
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non-interfering term |Er|2 + |Es|2 are largely suppressed, and the weak interference signal can
be detected in shot-noise limited conditions. Note that Es also contains the linear reflection
of E(t), which typically by far dominates its intensity, and that |Er|2 has to be significantly
larger than |Es|2 to reach shot-noise limited detection. This results in a weak interference due
to Rl1,l2

s (ω), typically below 10−3 relative modulation, which can only be detected in a well-
balanced scheme.

Rl1,l2
s (ω) is determined from Id by spectral interferometry [9], using the experimentally

adjusted property of Er to precede the signal field in time t . Using this property, we can apply
F(�(t)F−1(Id(ω))) = E∗

r (ω)Rl1 ,l2
s (ω) with the Heaviside function �(t), and the Fourier-

transform operator F . The reference field amplitude can be determined by blocking Ps and
measuring Ia,b = |Er|2 in this case. Since Er is the reference pulse reflected by the sample
it is helpful to arrange that the reflection does not strongly modify its spectrum. This can
be achieved by a metal coating on the sample with an opening at the signal beam, or by
using a surface reflection that is dominated by a non-resonant refractive index. Different Rl1 ,l2

s
including their relative phase can be measured sequentially during the passive phase stability
time of the setup. In order to correct for long-term drifts of the relative phase between the
signal and reference within a measurement consisting of many CCD exposures, the phase of
the measured signal is determined for subintervals of the total acquisition time. If the nonlinear
signal in the subintervals is too weak to determine the phase, one can monitor the phase drifts
of R1,0

s ∝ eiϕ1 and R0,1
s ∝ eiϕ2 instead.

In this way, different material responses can be measured sequentially: for �d = �1,2, the
reflected excitation pulses 1, 2 are measured, while for �d = 2�2 − �1, the emitted FWM
field ∝ E∗

1 E2
2 is measured. Higher-order nonlinearities, like six-wave mixing, can be detected

analogously.

3. Samples

We have investigated two different sample types with the HSI technique. Samples of type
(i) are localized excitons in thin GaAs/AlAs quantum wells grown with a growth interrupt to
enable the formation of large monolayer islands [14, 15, 12]. These samples are described
in [16], and they were also investigated by time-resolved and spectrally resolved speckle
analysis [17, 18]. A detailed theoretical model of the interface structure and the excitonic
properties is given in [19]. Samples of type (ii) are self-assembled epitaxial CdTe/ZnTe
quantum dots (QDs) [20]. In this review we will concentrate on results on samples of type (i).
They consist of an AlAs/GaAs/AlAs single quantum well grown by molecular-beam epitaxy
with a thickness increasing from approximately 4 to 10 nm over a total lateral displacement of
200 mm. The growth was interrupted for 120 s at each interface, allowing for the formation of
large monolayer islands on the growth surface. The sample was antireflection coated, and was
held in a helium cryostat at a temperature of T = 5 K.

4. Photoluminescence versus four-wave mixing

For non-resonant excitation at 1.96 eV, spatially focussed to the diffraction limit of the MO,
the confocally detected photoluminescence (PL) of an approximately 6 nm thick region of the
QW is shown in figure 2(a). In order to select individual states within the optical resolution
of the experiment (0.5 μm), we adjusted the fractional monolayer thickness of the QW to be
about −0.2 ML, yielding a low density of localized exciton states in the largest monolayer
(ML) thickness [19]. Due to the diffusion of the excited carriers prior to recombination, the
spatial resolution of the PL spectrum is determined by the resolution of 0.61 λ/NA in the
emission imaging. The same region was investigated by the FWM technique. The excitation
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Figure 2. (a) Confocally excited/detected PL spectrum of a (0.5 μm)2 area of an AlAs/GaAs QW
with a thickness of about 20.8 ML (6 nm). (b) Spectrally resolved FWM intensity of the same area
at τ = 1 ps. The spectrum of the excitation pulses is shown as a dotted line.

spectrum (see figure 2(b)) was resonant only to excitons localized in the lower monolayer in
order to avoid creating large exciton densities. The measured spectrally resolved FWM for
a small positive delay time τ = 1 ps is shown in figure 2(b). It consists of several sharp
resonances of 20–30 μeV full width at half maximum (FWHM). Since the FWM intensity is
proportional to the third power of the excitation intensity (in the low excitation intensity limit),
the spatial resolution in the FWM can be improved to 0.36 λ/NA ≈ 320 nm. FWM resonances
of significant strength are only observed at the higher-energy side of the PL emission, and the
FWM intensities of the resonances are not clearly correlated to the PL intensities. This is due
to the different properties probed by PL and FWM. The FWM intensity is (in the low excitation
intensity limit) proportional to the eighth power of the optical transition dipole moment μ of
the resonance. The PL intensity instead is determined by the radiative rate, proportional to μ2,
but also by the relaxation dynamics of excitons into the localized state. Additionally, in the
PL we use non-resonant excitation, for which charged exciton emission [21], having a binding
energy of about 4 meV, could be present, explaining the PL below 1.630 eV.

Due to the weak signal obtainable from single transitions, measurements are typically
performed at excitation intensities at the upper limit of the third-order regime, at which higher-
order contributions can be relevant. To illustrate this, we show in figure 3 the dependence of the
detected FWM intensity on the excitation intensity. We find that a third-order scaling is only
observed for the two smallest intensities used, while at higher intensities the signal saturates.
We have used the possibility of strong excitation to perform coherent optical manipulation such
as Rabi flopping, as reported in [15].

5. Photon echo formation

For positive delay times τ , the FWM detected at �d = 2�2 − �1, which is proportional
to the phase-conjugated electric field of the first pulse E∗

1 , shows the so-called photon echo,
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Figure 3. Spectrally resolved FWM intensity of a different sample area compared to figure 2 at
τ = 0.5 ps for various excitation intensities I/I0 as given, with I0 = 1.5 μW. The excitation and
detection polarizations were linear (→,→,→). In the left plot, the data have been normalized by
the third-order behaviour I 3; they are vertically offset for clarity, and are magnified by the factors
indicated. In the right plot, the intensity of various FWM peaks (indicated in the left plot with bars)
is shown as a function of the excitation intensity. A third-order scaling ∝ (I/I0)

3 is shown for
comparison (dotted line).

Figure 4. Left: scheme of the echo formation in transient FWM. Right: measured time-resolved
FWM intensity from a group of exciton states localized within an (0.5 μm)2 area. Excitation pulses
1, 2 (black) and time-resolved FWM intensity (red, oscillating line) for a delay time of τ = 20 ps
are shown.

which is a well-known feature and has been observed first in spin echoes [22], and later also in
the optical frequency range [23]. Due to the specific nonlinearity probed at this frequency,
the FWM phase at a time τ after the arrival of the second pulse does not depend on the
eigenfrequency of the two-level system, and thus a macroscopic polarization is created even
in presence of an ensemble of transitions with different transition energies (inhomogeneous
broadening). This mechanism is illustrated in the left part of figure 4. In a representative
measurement, shown in the right part, the formation of the echo in a finite ensemble is observed
as intensity enhancement at the time of the echo. Here and in the following we have fixed the
time-zero to the arrival of the second pulse; thus the first pulse arrives at t = −τ , and the echo
is created at t = τ .

Generally, we can write the FWM polarization for τ > 0 and t > 0 for a set of N two-level
systems with transition frequencies ω̃k as

R(0,1,2,0)(t, τ ) =
N∑

k=1

μ4
k |E1(ω̃k)E2

2 (ω̃k)|eiω̃k (t−τ)−γk (t+τ) (2)

with the dipole moments of the transitions μk and the appropriately normalized excitation field
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Figure 5. Simulated spectrally resolved FWM intensity (left) and time-resolved FWM intensity
(right) for ensembles of N two-level systems with equal transition dipole moment μ and dephasing
rate γ = 0.02 σ , but transition frequencies ωk taken from a Gaussian distributed ensemble of
variance σ (indicated as a red line in the N = 1000 FWM spectrum, together with corresponding
the FWM echo in the FWM dynamics).

amplitudes E1,2(ω) of pulse 1, 2 at the frequency ω. By taking the resonant field amplitudes
in this equation, we assume that the spectral width of the excitation pulse is much larger than
the dephasing rates γk of the transitions. At t = τ , the FWM fields from all two-level systems
are in phase, and therefore interfere constructively. This results in a signal amplitude N times
larger than the individual FWM amplitudes of a single transition. For other times, the phases
are, in general, randomly distributed due to the distribution of the transition frequencies, and
the signal amplitude is only about

√
N times the individual amplitude. In the limit of a large

number of systems in the ensemble, the signal at t = τ is thus far larger than at other times,
and is called a photon echo.

A simulation of the formation of the photon echo with increasing size N of the ensemble
is given in figure 5. The transition energies were chosen from a Gaussian distribution of
variance σ . While for a single transition the FWM dynamics is a free polarization decay, the
presence of several transitions leads to pronounced interference oscillations in the signal, which
show constructive interference at the photon echo time. With increasing N , this constructive
interference develops into a Gaussian photon echo dominating the response. For N = 1000,
the response is already close to the limit N → ∞, which is given as red lines for comparison.
We can compare this simulation with our experimental results by appropriate selection of
regions of the sample, to control the size of the state ensemble probed in the FWM. By
systematically increasing the number of participating transitions from one to many, we can
follow the formation of the photon echo with increasing ensemble sizes. This evolution is
shown in figure 6 for ensembles of about 1, 4, and 10 transitions. With increasing ensemble
size N , the intensity enhancement in the photon echo increases roughly ∝ N , as expected from
equation (2).

Apart from the evolution from a free polarization decay to a photon echo by increasing
the number of individual transitions in the ensemble, we find that even individual transitions
can show a photon echo in the FWM when measured by the HSI technique. This is due to the
fact that measurements on single transitions need a large number of repetitions, as the signal
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Figure 6. Measured FWM intensity for τ = 20 ps, spectrally resolved (left) and time resolved
(right), for exciton state ensembles of different size.

created in an individual measurement is small: at maximum one can detect a single photon in a
single measurement, but typically on average only 10−2 . . . 10−5 photons are detected due to the
limited collection efficiencies, detection efficiencies, and also to less than one photon initially
being emitted. In the measurements presented here, we average over 1–100 s for each FWM
spectrum, corresponding to 1010 . . . 1012 repetitions. During this time, slow fluctuations of the
environment of the probed transition can lead to a variation of its frequency (e.g. by the Stark
effect due to local electric field variations), resulting in an effective inhomogeneous broadening
in the time-ensemble probed by the measurement [1]. This manifests itself by a typical
linewidth of individual excitonic transitions in semiconductor quantum dots at low temperatures
measured in the single-dot photoluminescence of 100–1000 μeV [24–27], much larger than
their homogeneous linewidth as determined in large-ensemble photon echo experiments in the
1–10 μeV range [28, 7]. Since the HSI measures the time-ensemble average of the FWM
field, this effective inhomogeneous broadening also leads to the formation of a photon echo.
In the GaAs/AlAs samples only weak spectral wandering is observed, leading to a temporally
wide echo, similar or wider than the dephasing time. Much stronger spectral wandering was
observed in measurements on CdTe quantum dots (sample type (ii)) [20].

The spectral FWM intensity from a region of sample type (ii) with exciton states of
significant linewidth is given in the inset of figure 7, showing a lineshape of about 0.35 meV
FWHM. To investigate the time-evolution of the FWM from the single transition, we spectrally
filter the FWM around the transition (see inset) with a Gaussian of 0.62 meV FWHM.
The resulting time-evolution of the FWM intensity is given in figure 7 for various delay
times. A shift of the FWM with increasing delay time is observed. The transition thus does
show a photon echo as opposed to a free polarization decay, indicating that it is dominantly
inhomogeneously broadened. The homogeneous broadening of the transition is given by the
photon echo intensity at t = τ , decaying with τ like ∝ exp(−4τ/T2). This analysis yields
T2 = 20 ± 5 ps, corresponding to a homogeneous linewidth of 2/T2 = 66 μeV FWHM,
significantly smaller that the total linewidth measured.

9
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Figure 7. Time-resolved FWM from a single excitonic transition in a CdTe/ZnTe quantum dot at
various delays τ . The inset shows the spectrally resolved FWM intensity at τ = 7 ps, and the filter
function used to isolate the single transition (red solid line).

6. Two-dimensional spectroscopy

Multidimensional nonlinear optical spectroscopy [1] is an analogue of multidimensional
nuclear magnetic resonance, which enables one to determine the coherent coupling between the
resonances present in the system. Up to now, these investigations have been limited to studies
of large ensembles of the quantum systems under investigation, due to reasons of both signal
strength and directional selectivity. With the HSI technique, this multidimensional technique
has become feasible also for individual excitonic states [12, 20].

In figure 8(a) we show delay-time-dependent FWM spectra |R−1,2
s (τ, ω)|2 for a localized

exciton system in a sample of type (i). The strong intensity modulation versus delay time (also
called quantum beats) of some peaks indicate the presence of a coherent coupling between
them, where the beat period is given by the frequency difference of the coupled first-order
resonances. The coherent coupling between excitonic states is of specific interest for their
application in quantum computation. The most common coupling mechanisms are Coulomb
interaction, exchange interaction, and coupling via the near-field of the optical polarization
(Förster coupling). Since we know the signal in amplitude and phase for each measured delay
time τ , we can not only look at the intensity beating, which is non-straightforward to interpret,
but we can also Fourier transform the delay-time dependence of the signal for τ > 0, resulting
in the conjugated frequency variable ω1. This procedure yields the two-dimensional frequency
domain data |R−1,2

s (ω1, ω)|2 (see figure 8(b)). For τ > 0 the FWM signal is proportional to
the first-order polarization created by the first pulse, probed at the arrival time of the second
pulse. Since this polarization is freely evolving in the transitions of the system during the time
interval τ , the frequency variable ω1 gives the first-order frequency of the transition creating
the FWM signal. Fourier transforming the data for negative delay times τ < 0 instead results
in the frequency variable ω2, which is given by the frequency of the two-photon coherences,
which are propagating freely in the time between their creation by the second pulse and the
transformation into the FWM signal by the first pulse, as we will discuss in a forthcoming
work. We can see in |R−1,2

s (ω1, ω)|2 that each third-order resonance (i.e. in ω) is created by
one or more first-order resonances (in ω1). For uncoupled two-level systems, only one transition
frequency exists in each system, so that the first-order and third-order resonance frequencies

10
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Figure 8. Two-dimensional FWM of the same sample region as figure 3. Co-circular excitation
polarizations were used for pump, probe, and detection (σ+σ+σ+). (a) |R−1,2

s (τ, ω)|2 on a
logarithmic colour (grey) scale over 2 orders of magnitude for delay times τ = −10 . . . 50 ps.
(b) |R−1,2

s (ω1, ω)|2 calculated from (a) for τ > 0 on a logarithmic colour (grey) scale over 3.5
orders of magnitude. The insets show magnifications of a fine-structure split exciton and the coupled
unbound biexciton.

are equal, and the related FWM signal in |R−1,2
s (ω1, ω)|2 is on the diagonal ω1 = ω. We

find that the measured data are actually dominated by such diagonal resonances. However, off-
diagonal peaks are also present, giving evidence for the presence of coherent coupling between
the corresponding exciton states [13]. In the third-order regime, the off-diagonal peaks of
two first-order resonances on both sides of the diagonal are expected to be equal in intensity,
while in the experimental data the intensities are observed to be somewhat different, stronger
for ω1 < ω. This could be related to higher-order contributions, as preliminary simulations
have shown [29]. The spectra corresponding to individual first-order frequencies are given in
figure 9, together with a spectrum of the diagonal response ω1 = ω.

The simplest case showing coupling is the coherent coupling of two excitons. Such a
coupling could be diagonalized, resulting in a four-level excitonic system consisting of the
new excitonic eigenstates including the interaction [30]. A prominent example would be the
exciton–biexciton system in the lowest excitonic state of a quantum dot. There, the two spin-
degenerate exciton eigenstates are coupled by the long-range exchange interaction, resulting in
two linearly polarized excitonic states, and the Coulomb interaction and correlation between
the two excitons leads to an energy renormalization of the biexciton state. In such a system, the
resonances in ω of the two-dimensional response R−1,2

s (ω1, ω) can be different from ω1. The
resonances in ω1 would be the two fine-structure split excitons, and for each of these resonances
we would detect resonances in ω given by all four transitions in the four-level system, i.e. the
two excitonic and the two biexcitonic transitions.

Generally, in a multilevel system with transition frequencies ω̃k and dipole moments μk ,
the third-order response for positive delay times (neglecting damping for simplicity) can be
written as

R(0,1,2,0)(t > 0, τ > 0) ∝
∑
k∈X

μke−iω̃k τ

( ∑
l

μl Akl e
iω̃l t

)
(3)
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Figure 9. Spectra taken from the two-dimensional FWM of figure 8(b), corrected for the excitation
pulse spectrum |E(ω)|2. In the lowest frame the diagonal intensity |R−1,2

s (ω,ω)|2/|E(ω)|6 is given,
while in the other frames |R−1,2

s (ω1, ω)|2/|E(ω)|2 are given for selected ω1 = ω̃k as indicated. The
relative data scaling factors are shown.

where Akl describes the polarization transfer from the transition k (first-order resonance) to
the transition l (third-order resonance) by the second excitation field. X denotes the excitonic
transitions i.e. from the crystal ground state (the initial state in the experiment) to a single
electron–hole pair. These are the only ones excitable in first order. Infinitely short excitation
pulses are assumed here, which have a spectrally flat amplitude. Fourier transforming t → ω

and τ → ω1 gives

R(0,1,2,0)(ω, ω1) ∝
∑
k∈X

μkδ(ω1 + ω̃k)

( ∑
l

μl Aklδ(ω − ω̃l)

)
. (4)

For uncoupled two-level systems we have Akl = δklμkμl , so that only peaks along ω1 = ω are
present. The spectral width of the peaks in the experiment is determined by the respective
dephasing of the observed transition. Coupled transitions k 
= l instead create diagonal
and off-diagonal peaks at (ω, ω1) = (ω̃l , ω̃k), where the amplitudes would still be given by
Akl = μkμl , provided that the coupling energy is larger than the linewidth.

After these general remarks on the structure of the two-dimensional spectra, we now
discuss details of the interpretation of the measurement presented in figure 8(b). We observe
that the dominating peak at ω̃1 = 1.69156 eV is coupled to the first-order resonance doublet
ω̃4,5 around 1.6932 eV, split by 0.1 meV, and separated by 1.6 meV to ω̃1. This coupling
is the origin of the strong quantum beats in the intensities of ω̃1,4,5 versus τ . Knowing the
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typical structure of the confined excitonic states [19], the transition ω̃1 could be an exciton
in the lowest confined state of a large monolayer island, which shows no significant fine-
structure splitting but a strong transition dipole moment, leading to the observed strong FWM
signal. The transitions ω̃4,5 could then be higher exciton states in the same monolayer island,
showing a small splitting due to the lifting of the in-plane degeneracy of the p-states, and a
factor of about 1.8 smaller transition dipole moment (taken from the FWM intensity ratio of
about 100), comparable to the simulations in figures (16)–(19) in [19]. In the spectrum for
ω1 = ω̃1 (see figure 9), not only are the coupled transitions ω̃4,5 present, but also another one at
ω̃10 = 1.69714 eV. The diagonal response at ω̃10 is weak since the excitation spectral intensity
is reduced significantly, so that the corrected data are too noisy to decide if ω̃10 is a an exciton
transition (∈ X ) or an exciton–biexciton transition.

A clearer picture is found for the ω̃2,3 doublet, having a splitting of 0.1 meV. It is present
on the diagonal, so it represents exciton transitions. It is coherently coupled within itself,
and ω̃2 is additionally coherently coupled to ω̃9, and ω̃2 with ω̃8. The transitions ω̃8,9 are not
visible on the diagonal, i.e. they are exciton–biexciton transitions (see also insets in figure 8(b)).
Observing that ω̃2 + ω̃9 = ω̃3 + ω̃8, this set of transitions can be attributed to an exciton–
biexciton system consisting of a fine-structure split exciton pair ω̃2,3 with the transitions ω̃9,8

to a unsplit biexciton state of negative binding energy of 3.1 meV.
The transitions ω̃4 and ω̃7 do not show strong coherently coupled transitions within the

probed energy range, but both show a weak splitting of some 30 μeV. They are likely excitons
localized in slightly anisotropic monolayer islands, leading to a small fine-structure splitting.
The island size is probably smaller than for ω̃1, reducing the transition dipole moment and
shifting the second confined states further way in energy, out of the range of the excitation
pulses. For ω̃4 the weak peak at 1.697 eV could be due to such an excited state.

As we have seen, there is a wealth of information contained in a single two-dimensional
FWM measurement, and we are just at the beginning of its correct interpretation. The lineshape
of the peaks including their relative phase will provide for a distinction between different
coupling processes, and the linewidths measure the dephasing rates of the transitions. By
analysing the negative delay time dynamics, the properties of the two-photon coherences
(i.e. ground state to biexciton) can also be measured [31].
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